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Abstract

New approaches to numerical modelling of droplet heating and evaporation by convection and radiation from the

surrounding hot gas are suggested. The finite thermal conductivity of droplets and recirculation in them are taken into

account. These approaches are based on the incorporation of new analytical solutions of the heat conduction equation

inside the droplets (constant or almost constant h) or replacement of the numerical solution of this equation by the

numerical solution of the integral equation (arbitrary h). It is shown that the solution based on the assumption of con-

stant convective heat transfer coefficient is the most computer efficient for implementation into numerical codes. This

solution is applied to the first time step, using the initial distribution of temperature inside the droplet. The results of the

analytical solution over this time step are used as the initial condition for the second time step etc. This approach is

applied to the numerical modelling of fuel droplet heating and evaporation in conditions relevant to diesel engines,

but without taking into account the effects of droplet break-up. It is shown to be more effective than the approach based

on the numerical solution of the discretised heat conduction equation inside the droplet, and more accurate than the

solution based on the parabolic temperature profile model. The relatively small contribution of thermal radiation to

droplet heating and evaporation allows us to take it into account using a simplified model, which does not consider

the variation of radiation absorption inside droplets.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the pioneering monograph by Spalding [1], the

problem of modelling heating and evaporation of drop-
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lets has been widely discussed in Ref. [2–14]. In most

practical engineering applications in CFD (Computa-

tional Fluid Dynamics) codes, however, only rather

simplistic models for droplet heating have been used.

These models have been based on the assumption that

the thermal conductivity of liquid is infinitely high

and the temperature gradients inside droplets can be ig-

nored (see e.g. [15–17]). This simplification of the model

was required due to the fact that droplet heating and
ed.
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Nomenclature

a coefficient introduced in Eq. (21)

af coefficient introduced in Eq. (10)

ak liquid fuel absorption coefficient

b coefficient introduced in Eq. (21)

bf coefficient introduced in Eq. (10)

B coefficient introduced in Appendix A

Bk Planck function

BM Spalding mass number

c specific heat capacity or molar concentra-

tion

C1,2 coefficients in the Planck function

Dc binary diffusion coefficient

fn coefficients introduced in formula (13)

G(t,r) kernel defined by formula (13)

h convection heat transfer coefficient

h0
hRd
kl

� 1

h1 parameter introduced in formula (14)

H(t)
hðtÞRd
kl

� 1

k thermal conductivity

L specific heat of evaporation

Le Lewis number

m mass

M molar mass

M(t) h(t)Teff(t)Rd/kl
n index of refraction

qn coefficients introduced in formula (11)

Qa efficiency factor of absorption

p pressure

pn coefficients introduced in formula (11)

P1(R) power generated in unit volume

Pe Peclet number

Pr Prandtl number

r normalised radius (R/Rd)

R radius

Re Reynolds number

t time

T temperatureeT 0ðrÞ variable introduced in formula (11)

u(1,t) function introduced in formula (15)

U(r,t) function introduced in formula (13)

vn(r) eigen functions used in Eq. (11)

kvn(r)k parameter introduced in Eq. (11)

w normalized absorbed spectral power of radi-

ation per unit volume

Y mass fraction

Greek symbols

bn parameter introduced in Eq. (B1)

c parameter introduced in Eq. (4)

cn parameter introduced in Eq. (A2)

Dt time step

� small parameter introduced in formula (13)

g(t) parameter introduced in formula (13)

f(t) parameter introduced in formula (18)

j kl=ðclqlR2
dÞ

jk index of absorption

k wavelength

kn eigen values used in formula (11)

l0(t)
hT eff ðtÞRd

kl
lc parameter introduced in Eq. (4)

l
*

parameter introduced in Eq. (4)

m0(t) function introduced in formula (13)

n parameter introduced in formula (5)

q density

s optical thickness or the argument in the

integrands

s0 akRd

u parameter introduced in formula (A4)

w parameter introduced in formula (18)

Subscripts

a air

c centre

d droplet

eff effective

ext external

f fuel

fs saturated fuel vapour

g gas

l liquid

p constant pressure

s surface
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evaporation had to be modelled alongside the effects of

turbulence, combustion, droplet break-up and related

phenomena in realistic 3D enclosures. Hence, finding

a compromise between the complexity of the models

and their computational efficiency is the essential pre-

condition for successful modelling. Bertoli and Migliac-

cio [18] were perhaps the first who drew attention to the
fact that the accuracy of CFD computations of heating,

evaporation and combustion of diesel fuel sprays could

be substantially increased if the assumption of infinitely

high thermal conductivity of liquid is relaxed. They sug-

gested that the numerical solution of the heat conduc-

tion equation inside the droplets is added to the

solution of other equations in a CFD code. Although
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this approach is expected to increase the accuracy of

CFD predictions, the additional computational cost

might be too high for practical applications.

An alternative approach to taking into account the

effects of finite thermal conductivity and recirculation in-

side droplets have been suggested in [19]. This model is

based on the parabolic approximation of the tempera-

ture profiles inside the droplets. This approximation

does not satisfy the heat conduction equation with

appropriate boundary conditions, but satisfies the equa-

tion of thermal balance at the droplet surfaces. Compar-

ison with numerical solutions of the transient problem

for moving droplets shows the applicability of this

approximation to modelling the heating and evapora-

tion processes of fuel droplets in diesel engines. The sim-

plicity of the model makes it particularly convenient for

implementation into multidimensional CFD codes to re-

place the above mentioned model of isothermal droplets.

Preliminary results of the implementation of the simpli-

fied version of this model into a research version of the

CFD code VECTIS of Ricardo Consulting Engineers

have been demonstrated in [20].

Instead of solving numerically the heat conduction

equation inside a droplet, or using a simplified model

based on the parabolic approximation, one could think

about the development of a numerical code based on

the analytical solutions of this equation for the liquid fi-

nite thermal conductivity. A number of analytical solu-

tions for a spherically symmetric problem have been

obtained and discussed in [21–25]. In most cases these

analytical solutions have been presented in the form of

converging series.

The liquid finite thermal conductivity models (based

on numerical or analytical solutions of the spherically

symmetrical heat conduction equation) could be gener-

alised to take into account the internal recirculation in-

side droplets. This could be achieved by replacing the

thermal conductivity of liquid kl by the so called effective

thermal conductivity keff = vkl, where the coefficient v
varies from about 1 (at droplet Peclet number Ped =

RedPrd < 10) to 2.72 (at Ped > 500). It can be approxi-

mated as [5]:

v ¼ 1.86þ 0.86 tanh½2.225log10ðPed=30Þ�.

The values of transport coefficients in Ped are taken

for liquid fuel, the relative velocity of droplets and their

diameters are taken for calculation of Red. This model

can predict the droplet average surface temperature,

but not the distribution of temperature inside droplets.

In our case, however, we are primarily interested in

the accurate prediction of the former temperature, which

controls droplet evaporation. Hence, the applicability of

this model can be justified.

Some preliminary results of the implementation of

the analytical solution obtained in [25] into a numerical

code were reported in [26]. In [27] the effects of finite
thermal conductivity of fuel droplets and external radia-

tion on droplet evaporation and ignition of fuel vapour/

air mixture were studied in detail based on a one dimen-

sional code. In this code an analytical solution of the

heat conduction equation in the presence of radiation

was incorporated; this solution was coupled with the rel-

evant equations for gas. A semi-analytical model for

droplet evaporation reported in [28] is rather similar to

that reported in [26], although the effects of thermal

radiation were not taken into account, and a simplified

form of the analytical solution was used. The problem

of modelling the heating and evaporation of droplets,

taking into account the effect of liquid finite thermal

conductivity, is closely linked with the problem of mod-

elling the heating and evaporation of multicomponent

droplets (e.g. [9,29]). It is anticipated that some ideas

developed in [26–28] and the present paper could be gen-

eralised to take into account the effects of multicompo-

nent droplets, although the discussion of these possible

generalisations is beyond the scope of this paper.

This paper is essentially an extended and updated

version of the conference paper [26]. More specifically,

the applicability of the results of the analysis of [19,25]

to the problem of numerical modelling of heating and

evaporation of droplets in engineering CFD codes will

be investigated. This will be achieved via the analysis

of accuracy and computer efficiency of various algo-

rithms. The algorithms suggested can be easily imple-

mented into any CFD code. The description of the

details of this implementation, however, and the analysis

of coupled solutions of the equations for liquid and gas

phases are beyond the scope of this paper. This is done

in our parallel paper [27]. In contrast to [28], both con-

vective and radiative heating will be taken into account.

The basic equations and approximations used in our

analysis are discussed in Section 2. Summary of the

analytical solutions of the heat conduction equation is

presented in Section 3. In Section 4 the numerical algo-

rithms for incorporation of various models into CFD

codes are discussed. The comparative analysis of these

algorithms is given in Section 5. The main results of

the paper are briefly summarised in Section 6.
2. Basic equations and approximations

Assuming that droplet heating is spherically symmet-

ric, the transient heat conduction equation inside this

droplet can be written as [21,22,25]:

clql

oT
ot

¼ kl
o2T

oR2
þ 2

R
oT
oR

� �
þ P 1ðRÞ; ð1Þ

where cl is the liquid specific heat capacity, ql and kl are
the liquid density and thermal conductivity respectively,

T = T(R, t) is the droplet temperature, R is the distance

from the centre of the droplet, t is time and P1(R) is
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the power generated in unit volume inside the droplet

due to external radiation. cl, ql and kl are assumed to

be constant for the analytical solution of Eq. (1). Their

variations with temperature and time will be accounted

for when our analytical solutions are incorporated into

the numerical code. This will be discussed later in Sec-

tions 4 and 5.

Assuming that the droplet is heated by convection

from the surrounding gas, and cooled down due to evap-

oration, the energy balance equation at the droplet sur-

face can be written as:

hðT g � T sÞ ¼ �qlL _Rd þ kl
oT
oR

����
R¼Rd

; ð2Þ

where h = h(t) is the convection heat transfer coefficient

(time dependent in the general case), Rd is the droplet�s
radius, Tg is the gas ambient temperature, Ts is the drop-

let�s surface temperature, L is the specific heat of evapo-

ration. We took into account that _Rd < 0. Eq. (2) can be

considered as a boundary condition for Eq. (1) at

R = Rd. This needs to be complemented by the boundary

condition at R = 0:

oT
oR

����
R¼0

¼ 0.

The initial condition is taken in the form: T(t = 0) =

T0(R).

The radiation term is presented as [30,31]:

P 1ðRÞ ¼
3p
Rd

Z k2

k1

wðr; kÞQaBkðT extÞdk; ð3Þ

where r = R/Rd, Bk(Text) is the Planck function defined

as:

BkðT extÞ ¼
C1

pk5½expðC2=ðkT extÞÞ � 1�
;

C1 ¼ 3.742	 108
Wlm4

m2
; C2 ¼ 1.439	 104 lmK;

k is the wavelength in lm. Text is is the external temper-
ature responsible for radiative heating which is assumed

to be constant. Qa is the efficiency factor of absorption.

The required approximation for Qa depends on the spe-

cific application of the model. If this application is

focused on the problem of heating and evaporation of

diesel fuel droplets it can be estimated as [30,31]:

Qa ¼
4n

ðnþ 1Þ2
½1� expð�2akRdÞ�;

where ak is the liquid fuel absorption coefficient, n is the

refractive index of liquid diesel fuel; ak is related to the

index of absorption jk as jk = akk/(4p). w(r,k) is the nor-
malised spectral power of radiation per unit volume ab-

sorbed inside the droplet. The following equations are

used for the estimate of this power [31]:
wðr; kÞ ¼ ½1� l
Hðr � 1=nÞ�ðr2 þ �cÞ
½0.6ð1� l5

cÞ � l3
c=n

2� þ cð1� l3
cÞ
; ð4Þ

where

�c ¼ ð1.5=s20Þ � ð0.6=n2Þ;

l
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

nr

� �2
s

;

lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

n

� �2
s

;

s0 ¼ akRd ¼ 4pjRd=k;

HðxÞ ¼
0 when x < 0;

1 when x P 0

�
or

wðsÞ ¼ n2s30
3

exp½�nðs0 � sÞ�
s0ðns0 � 2Þ þ ð2=nÞ½1� expð�ns0Þ�

; ð5Þ

where s = akR, n = 2/(1 + lc). Eq. (4) was used when

s0 < n
ffiffiffiffiffiffiffi
2.5

p
, otherwise Eq. (5) was used. k1 and k2 de-

scribe the spectral range of thermal radiation which con-

tributes to droplet heating. An alternative expression for

w was obtained recently in [32]. Application of the

expression given in [32] instead of the one given by

Eqs. (4) and (5) is not expected to lead to any noticeable

difference in the results.

Eq. (2) can be rearranged to:

T eff � T s ¼
kl
hRd

oT
or

����
r¼1

; ð6Þ

where

T eff ¼ T g þ
qlL _Rd

h
. ð7Þ

Eq. (6) is complemented by the boundary condition

at R = 0 and the corresponding initial condition men-

tioned above.

The value of _Rd is controlled by fuel vapour diffusion

from the droplet surface. For stationary droplets it can

be found from the equation [9]:

dmd

dt
¼ �4pqgDcRd lnð1þ BMÞ; ð8Þ

where md is the droplet mass, qg is gas density, Dc is the

binary diffusion coefficient, BM = Yfs/(1�Yfs) is the Spal-

ding number, Yfs is the mass fraction of fuel vapour near

the droplet surface:

Y fs ¼ 1þ p
pfs

� 1

� �
Ma

M f

	 
�1
; ð9Þ

p and pfs are ambient pressure and the pressure of satu-

rated fuel vapour near the surface of droplets respec-

tively, Ma and Mf are molar masses of air and fuel; pfs
can be calculated from the Clausius–Clapeyron equation

presented in the form [33,4]:
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pfs ¼ exp af �
bf

T s � 43

	 

; ð10Þ

af and bf are constants to be specified for specific fuels,

Ts is the surface temperature of fuel droplets in K; pfs
predicted by Eq. (10) is in kPa. The quantity qgDc in

Eq. (8) can be replaced by kg/cpg assuming that the Lewis

number is unity (Le = kg/(qgcpgDc) = 1).

The generalisation of Eq. (8) to the case of moving

droplets is well known [5]. However, since we are pri-

marily interested in testing the new model for heating

rather than evaporation of droplets, this generalisation

is not important for our analysis, even if the effect of

droplet motion on the value of the convective heat trans-

fer coefficient is taken into account.

Eqs. (1) and (8) for droplets are complemented by the

equations for droplet trajectory, the temperature of the

gas phase (Tg) and molar concentration of fuel vapour

(cf) within the Lagrangian spray model. This system of

ODEs of the Lagrangianmodel equations is coupled with

the solution of PDEs of the Eulerian gas model. This is

the conventional way of modelling spray/gas interaction

in a CFD framework [15,16]. The focus of this paper,

however, will be just on Eqs. (1) and (8). The analysis

of coupled solutions is given in our parallel paper [27].

The evaporation model used in our analysis is similar to

the one used in most CFD codes. It is based on the

assumption that fuel vapour in the vicinity of fuel droplet

surface is always saturated. More rigorous analysis of

droplet evaporation would require a kinetic approach

which is beyond the scope of this paper (see [34–37]).
3. Summary of analytical solutions

3.1. Case h(t) = const.

In the case when h(t) = const., the solution of Eq. (1)

with Rd = const. and the corresponding boundary and

initial conditions, as discussed in Section 2, can be pre-

sented as [25]:

T ðr; tÞ ¼ 1

r

X1
n¼1

(
pn
jk2n

þ exp½�jk2nt� qn�
pn
jk2n

 !

� sinkn

kvnk2k2n
l0ð0Þexp �jk2nt

� �
� sinkn

kvnk2k2n

	
Z t

0

dl0ðsÞ
ds

exp½�jk2nðt� sÞ�ds
)
sinknrþT effðtÞ;

ð11Þ

where

l0ðtÞ ¼
hT effðtÞRd

kl
; h0 ¼ ðhRd=klÞ � 1;

kvnk2 ¼
1

2
1þ h0

h20 þ k2n

 !
; j ¼ kl

clqlR
2
d

;

pn ¼
1

kvnk2
Z 1

0

~P ðrÞvnðrÞdr;

qn ¼
1

kvnk2
Z 1

0

~T 0ðrÞvnðrÞdr;

eP ðrÞ ¼ rPðrÞ; eT 0ðrÞ ¼ rT 0ðRÞ; vnðrÞ ¼ sin knr

ðn ¼ 1; 2; . . .Þ;

a set of positive eigenvalues kn numbered in ascending

order (n = 1, 2, . . .) is found from the solution of the fol-

lowing equation:

k cos k þ h0 sin k ¼ 0.

If T0(r) is twice differentiable, then the series in (11)

converges absolutely and uniformly for all t P 0 and

r = R/Rd 2 [0,1].

In the limiting case when l0 = const., P(r) = 0,
_Rd ¼ 0, Teff = const. and kl ! 1 Eq. (11) reduces to [24]:

T ðtÞ � T dðtÞ ¼ T sðtÞ

¼ T g þ ðT s0 � T gÞ exp � 3ht
clqlRd

� �
. ð12Þ

Note that the value of T(t) � Td(t) does not depend

on r. The same equation could be obtained directly from

the energy balance equation at the surface of the droplet,

assuming that there is no temperature gradient inside it.

3.2. Case of almost constant h(t)

Let us assume that [25]:

HðtÞ � hðtÞRd

kl
� 1 ¼ h0 þ �gðtÞ;

where � is a small parameter, and h0 = const.

In this case the approximate solution of Eq. (1) can

be written as [25]:

T ðr; tÞ ¼ 1

r
Uð1; tÞ �

Z t

0

MðsÞGðt � s; 1Þds
�

þ�

Z t

0

gðsÞm0ðsÞGðt � s; 1Þds

�
; ð13Þ

where

Uðr; tÞ ¼
X1
n¼1

pn
jk2n

þ exp½�jk2nt� qn �
pn
jk2n

 !( )
sinðknrÞ;

Gðt; rÞ ¼ j
X1
n¼1

k2nfn exp �jk2nt
� �

sin knr

¼ �j
X1
n¼1

sin kn

kvnk2
exp½�jk2nt� sin knr;
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MðtÞ ¼ hðtÞT effðtÞRd

kl
;

m0ðtÞ ¼ Uð1; tÞ �
Z t

0

MðsÞGðt � s; 1Þds.

fn ¼ � sin kn

kvnk2k2n
.

3.3. Case h(t) 6¼ const. (general case)

Let us assume that:

HðtÞ ¼ h0 þ h1ðtÞ; ð14Þ

where h0 = const.5 �1 and h1(t) is an arbitrary func-

tion of time.

In this case the solution of Eq. (1) can be written as:

T ðr; tÞ¼ 1

r
Uðr; tÞ�

Z t

0

½MðsÞ�h1ðsÞuð1;sÞ�Gðt�s;rÞds
� �

;

ð15Þ

where u(1, t) is found from the solution of the following

integral equation:

uð1; tÞ ¼ Uð1; tÞ �
Z t

0

MðsÞ � h1ðsÞuð1; sÞ½ �Gðt � s; 1Þds;

ð16Þ
and U(1,t) is the same as in Eq. (13).

Eq. (16) is the Volterra integral equation of the sec-

ond kind. It has a unique solution, although this solu-

tion cannot be found in an explicit form. The

numerical scheme for its solution is described in [25].

3.4. A parabolic temperature profile model

Solution (11) can be reasonably accurately approxi-

mated by a parabolic function of r [19]:

T ðr; tÞ ¼ T cðtÞ þ ½T sðtÞ � T cðtÞ�r2; ð17Þ

where Tc is the temperature in the centre of the droplet.

This presentation of T(r, t) takes into account the differ-

ence between the temperatures in the centre and at the

surface of the droplet. The boundary condition at

R = 0 is satisfied. The boundary condition at R = Rd

and the condition for the thermal balance of the droplet

leads to the following equation [19]:

T s ¼ ðT þ 0.2fT gÞ=w þ 0.2fqlRd
_RdðT sÞL=ðklwÞ. ð18Þ

where w = 1 + 0.2f, f = 0.5Nukg/kl, Nu = 2hRd/kg is the

Nusselt number,

T ¼ 3

R3
d

Z Rd

0

R2T ðRÞdR ð19Þ

is the average droplet temperature.

One of the main limitations of Eq. (18) is that it does

not predict that T sðt ¼ 0Þ ¼ T ðt ¼ 0Þ. This can be over-
come by introducing the relevant corrections for small t

[19]. These corrections, however, turned out to be not

very important in most practical applications and will

not be considered in this paper. Note that the parabolic

model can be developed more rigorously based on Eq.

(11) if only the first term in this series is taken into ac-

count, the contribution of thermal radiation is ignored

and the initial temperature inside droplets is assumed

to be constant. This approach was suggested in [38]. In

the limit t! 1 Eq. (18) derived in [38] is identical with

our Eq. (18) in the limit when _Rd ¼ 0. For t! 0 the

accuracy of Eq. (18) given in [38] becomes questionable

since in this case all terms in Eq. (18) become

comparable.

Results of further development of the parabolic tem-

perature profile model taking into account the effect of

evaporation are discussed in [39].
4. Numerical algorithms

We assume that the temperature of gas Tg(t) is given.

The influence of droplets on it is ignored. This approxi-

mation would be justified in the case where the concen-

tration of droplets of low. In realistic situations gas

temperature can be calculated by the enthalpy transport

equation with the source term describing the contribu-

tion of droplets. This is done in our parallel paper

[27]. The values of the convection heat transfer coeffi-

cient depend on gas parameters (velocity and viscosity)

alongside droplet radius. The latter is calculated using

Eq. (8) and taking into account droplet swelling due to

the decrease of liquid fuel density with increasing tem-

perature. Under these assumptions the calculation of

droplet temperature reduces to the solution of Eq. (1)

subject to appropriate initial and boundary conditions.

When calculating droplet radius we take into account

the conservation of mass of liquid droplet during its

swelling. This leads to the condition:

RdðT Þ ¼ RdðT d0Þ
qðT d0Þ
qðT Þ

� �1=3

; ð20Þ

where T is defined by Eq. (19).

In what follows, five numerical algorithms for the

solution of the problem of droplet heating and evapora-

tion will be considered. These will be based on the

numerical solution of discretised heat conduction

equation (1) and the solutions discussed in Sections

3.1–3.4.

4.1. Numerical solution of discretised equation (1)

There are various schemes for the numerical solution

of discretised Eq. (1) widely discussed in CFD literature

[40–42]. We use the fully implicit finite volume scheme.
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4.2. Numerical algorithm using the solution for

h(t) = const.

If the time step over which droplet temperature and

radius are calculated is small, we can assume that

h(t) = const. over this time. In this case we calculate
_Rdðt ¼ 0Þ from Eq. (8) and Teff(t = 0) from Eq. (7). Then

the initial condition at t = 0 will allow us to calculate

T(R, t) at the end of the first time step (T(R, t1)) using

Eq. (11). Rd(t1) is calculated based on Eq. (8) with the

correction for swelling of the droplet (see Eq. (20)).

The same procedure is repeated for all the following

time steps until the droplet is evaporated. The number of

terms in the series in Eq. (11) which needs to be taken

into account depends on the timing of the start of drop-

let heating and the time when the value of droplet tem-

perature is calculated. For parameters relevant to diesel

engine environments, just three terms in the series can be

used with possible errors of not more than about 1%

[25].

Note that the integrals over r, used to estimate T and

qn, can be calculated analytically as described in Appen-

dix A.

At the very initial stage of droplet heating, when the

boundary layer around the droplet does not have time to

be established, the description of droplet heating in

terms of the convection heat transfer coefficient might

be not adequate [43–47].

4.3. Numerical algorithm using the solution for almost

constant h(t)

When the change of h(t) over a time step is small but

still needs to be taken into account then the analytical

solution for almost constant h(t) can be applied. The dif-

ficulty in the application of the analytical solution given

in Section 3.2 is that the value of �g(t) cannot be a priori
established in the general case, and iterations are re-

quired. The general scheme for the solution in this case

starts with the first step for the case when h(t) = const.

Droplet radius is calculated taking into account droplet

swelling and evaporation. If the relative gas-droplet

velocity is low then h(t1) = kg/Rd(t1). In the case where

this velocity needs to be taken into account then the ex-

change of momentum between droplets and gas needs to

be considered [16]. At the next stage we assume that h(t)

is a linear function of t in the range (0, t1). This allows us

to assume that g(t) = t and calculate � as � � �1 =
(h(t1) � h0)/t1, where �1 indicates the value of � for the
first iteration. Then we calculate all parameters used in

Eq. (13) and find the value of T(r, t1) from this equation.

The updated values of Rd(t1) and h(t1) are calculated

similarly to the case of h(t) = const. The value of h(t1)

is expected to be close to the one predicted by the anal-

ysis based on the assumption that h(t) = const. In the

unlikely event if this is not the case a further iteration
is needed. Based on our experience, the prediction of

the second iteration is practically indistinguishable from

the prediction of the first iteration for realistic diesel

engine conditions.

When considering the next time step between t1 and

t2 we assume that g(t) = t (as at the previous step). Then
we assume that � = �1, that is the value of � at the second
time step is the same as at the first time step. After that

the value of T(r, t2) is calculated based on Eq. (13) and

using the values of T(r, t1) as the initial condition. As a

result, the values of h(t2) and �2 = (h(t2) � h(t1))/

(t2 � t1) are obtained. The calculations of T(r, t2) are re-

peated for � = �2. The updated values of Rd(t2) and h(t2)

are calculated similarly to the case of h(t) = const. The

same procedure is repeated for all the following time

steps until the droplet is evaporated.
4.4. Numerical algorithm for arbitrary h(t)

It is unlikely that the numerical algorithm for arbi-

trary h(t) is used in CFD calculations. It can, however,

be useful for calculating heating of slowly evaporating

individual droplets in a prescribed gas flow. Using the

prescribed functions h0 and h1(t) Eq. (16) is solved

numerically for u(1, t), based on the algorithm described

in [25]. In the case of fast moving droplets the values of

h0 and h1(t) are calculated from known values of the

droplet radius, gas thermal conductivity and the calcu-

lated time dependence of droplet relative velocity. Then

the values of T(r, t) are obtained from Eq. (15) for

Teff = Tg. At the next stage the values of _Rd are calcu-

lated from Eq. (8) and the updated value of Teff is found.

The change of Rd over the time of calculations should be

small. Otherwise, the equations described in Section 3.3

are not applicable.
4.5. Numerical algorithm for the parabolic temperature

profile model

Although the algorithms described in Sections 4.1–

4.3 are likely to describe the heating of droplets more

accurately compared with the the case where the temper-

ature gradients inside droplets are ignored altogether,

they might be CPU intensive. A reasonable compromise

between accuracy and CPU time requirements can be

achieved for the parabolic temperature profile model de-

scribed in Section 3.4. The effect of thermal radiation is

ignored at this stage. It can be included as a perturbation

if required [48].

The application of this model starts with finding the

average droplet temperature (T ) from Eq. (19). Then the

value of Ts is calculated from Eq. (18) assuming that
_Rd ¼ 0. Using this value of Ts the updated value of _Rd

is obtained. Then this updated value of _Rd allows a more

accurate estimate of Ts.
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Note that in this algorithm we do not need to take

into account the differential radiation heating of drop-

lets as described by the function w(r,k), as we are not

interested in the details of temperature distribution in-

side droplets. Instead, the global heating of droplets

needs to be accounted for as described in [49,20,50].
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Fig. 1. Plots of droplet surface temperature Ts and radius Rd

versus time, without taking into account the effect of thermal

radiation. It is assumed that the convection heat transfer

coefficient h decreases from 1.377kg/Rd to kg/Rd over 1 ms. Gas

temperature is taken equal to 1000 K. The calculations have

been performed using the numerical algorithms based on the

analytical solution for h = const. (curves 1), direct numerical

solution of the discretised heat conduction equation (curves 2),

the numerical solution based on the parabolic temperature

profile model (curves 3), and the numerical solution based on

the assumption that there is no temperature gradient inside the

droplet (curves 4). Curves 1 and 2 coincide within the accuracy

of plotting.
5. Comparative analysis

In this section the performance of the schemes dis-

cussed in Section 4 will be compared for the parameters

relevant to diesel engines. The initial droplet radius

taken is equal to 10 lm, and its initial temperature is

equal to 300 K. The droplet swelling and the tempera-

ture dependence of kl are taken into account: the latter

decreased from 0.145 W/mK to 0.02 W/mK when the

droplet temperature increased from 300 K to 725 K

[51]. The effect of droplet break-up will not be taken into

account, and this might lead to unrealistically long drop-

let lifetimes. It is, however, essential to separate the

effects of droplet heating and evaporation from other

processes to get a better insight into advantages and lim-

itations of various algorithms. At first we consider the

case when the contribution of thermal radiation is ig-

nored. Then the contribution of thermal radiation is

discussed.

5.1. Comparison of numerical algorithms without

thermal radiation

It is assumed that the convection heat transfer coeffi-

cient h decreases from 1.377kg/Rd to kg/Rd over 1 ms.

This can approximate the reduction of the droplet rela-

tive velocity from 0.45 m/s to zero–the situation relevant

to diesel engines when air entrainment by a fuel spray is

taken into account [52,53]. At first the numerical algo-

rithms using the solution for h = const., almost constant

h and arbitrary h were compared for the case of droplet

heating without evaporation. Gas temperature was

taken equal to 1000 K.

All three algorithms predict almost the same depen-

dence of droplet surface temperature on time. From

the point of view of computer efficiency, however, the

algorithm using the analytical solution for h = const.,

has had clear advantages over other algorithms. The

CPU time required by this algorithm has been more

than an order of magnitude less than the CPU time re-

quired by the algorithms with transient h for comparable

accuracy of the results. Three terms in the analytical

solution have been taken by this algorithm. We expect

that this would introduce an error of the solution less

than 1% for the values of parameters under consider-

ation except at the very initial stage of calculations,

the contribution of which can be ignored in most practi-

cal applications (see [25] for details). For benchmarking
we used the numerical algorithm based on the solution

for h = const., keeping 25 terms (corresponding to 25

eigenvalues) in the series. This truncation of the series

becomes more difficult in the case of the solution for al-

most constant and arbitrary h. In both these cases the

solution is presented in integral forms (see Eqs. (13)

and (16)). Truncation of the series in G(t, r) would lead

to substantial errors in evaluating G(t, r) in the limit

t! 0. These, in their turn, are expected to lead to errors

in calculating the integrals in Eqs. (13) and (16) regard-

less of the values of t. These results allow us to focus on

the algorithm using the solution for h = const. for the

implementation in CFD codes.

At the next stage we compared the performance of

this algorithm with the performance of the numerical

solution of the discretised heat conduction equation,

the performance of the numerical algorithm based on

the parabolic temperature profile model, and the numer-

ical algorithm based on the assumption that there is no

temperature gradient inside the droplet (Eq. (12)). As in

the previous analysis we assumed that Tg = 1000 K, but

allowed droplets to evaporate and swell.

Results of our calculations of the droplet surface

temperature and radius as functions of time, using the

above mentioned four algorithms, are shown in Fig. 1.

As follows from this figure, the predictions of numerical

calculations based on the numerical solution of the dis-

cretised heat conduction equation and the algorithms

using the analytical solution for h = const. almost coin-
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cide for both the surface temperature and droplet radius.

Both these solutions differ noticeably from the predic-

tions of the model based on the assumption of no tem-

perature gradient inside the droplet. The predictions of

the parabolic model are between the above mentioned

solutions. This means that from the point of view of po-

tential accuracy, the numerical solution of the discre-

tised heat transfer equation and the solution based on

the algorithms using the solution for h = const. (keeping

three terms in the series) are practically identical and

superior to the numerical solutions based on the para-

bolic temperature profile model and the model with no

temperature gradient inside the droplet. Accuracy, how-

ever, is not the only parameter which determines the

applicability of the model for the implementation into

CFD codes. Another parameter which needs to be ac-

counted for is CPU requirement.

The plots of errors and CPU times versus time step

Dt for the numerical algorithm based on the analytical

solution for h = const. and numerical solution of the dis-

cretised heat conduction equation are shown in Fig. 2.

100 nodes along the radius were considered for the latter

solution to provide calculations with relative errors of

less than about 0.5%. The calculations for the parabolic

temperature profile model and the numerical solution

based on the assumption that there is no temperature
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Fig. 2. Plots of errors and CPU times of calculation of

evaporation time versus time step for the calculations presented

in Fig. 1. The errors were calculated relative to the prediction of

the numerical solution of the discretised heat conduction

equation with Dt = 10�6 s and using 1000 nodes along droplet

radius. The plots of errors are presented for the numerical

algorithm based on the analytical solution for h = const. (curves

1) and numerical solution of the discretised heat conduction

equation (curves 2). Plots of CPU times are presented for the

algorithm based on the analytical solution for h = const. (curves

3) and numerical solution of the discretised heat conduction

equation (curves 4). The calculations for the parabolic temper-

ature profile model and the numerical solution based on the

assumption that there is no temperature gradient inside the

droplet were performed using the adaptive time step. The errors

of these calculations relative to the prediction of the direct

numerical solution were 1.2% and 3.6% respectively.
gradient inside the droplet were performed using the

adaptive time step. The errors of these calculations rela-

tive to the prediction of the numerical solution of the

discretised heat conduction equation were 1.2% and

3.6% respectively. All errors were calculated relative to

the prediction of the numerical solution of the discre-

tised heat conduction equation with 1000 nodes along

droplet radius and time step Dt = 0.001 ms. As follows

from Fig. 2, the errors of calculations based on the algo-

rithm using the analytical solution for h = const. are

consistently lower when compared with the errors of cal-

culations based on the numerical solution of the discre-

tised heat transfer equation for Dt > 0.01 ms. At smaller

Dt these errors are close to zero for both solutions. This

can be related to the fact that the numerical solution of

the discretised heat conduction equation is based on the

assumption that non-linear terms can, with respect to

the time step, be ignored, while the algorithms using

the analytical solution for h = const. implicitly retain

these terms.

As mentioned above, the errors of the numerical

algorithm based on the parabolic temperature profile

model are generally less than the errors of the numerical

algorithm based on the assumption that there is no tem-

perature gradient inside droplet. The CPU requirements

of the parabolic temperature profile model, however, are

slightly larger than those of the model based on the

assumption of no temperature gradients inside droplets.

In both cases, however, they are expected to be less than

for more rigorous models for the same time step. It is

recommended that the numerical algorithm based on

the parabolic temperature profile model is used in

CFD codes if the high accuracy of calculations is not

essential. Note that the solution predicted by the algo-

rithm using the analytical solution for h = const. reduces

to that predicted by the numerical algorithm based on

the assumption that there is no temperature gradient in-

side droplet in the limit when kl ! 1 (the value kl =

10 W/mK was used for this calculation).

5.2. Comparison of numerical algorithms with thermal

radiation

There can be two different approaches to modelling

the effects of thermal radiation on heating and evapora-

tion of droplets. If we intend to take into account the

distribution of thermal radiation absorption inside drop-

lets we first need to use the term P1(R) in Eq. (1) as de-

fined by Eq. (3). If we ignore the distribution of thermal

radiation absorption inside droplets then a much simpler

approach can be used as suggested in [49,20,50]:

P 1ðRÞ ¼ 3	 106arRb�1
dðlmÞh

4
R; ð21Þ

where hR is the radiation temperature (assumed equal to

the external temperature), Rd(lm) is the droplet radius in
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Fig. 3. Plots of droplet surface temperature Ts and radius Rd

versus time taking into account the effects of thermal radiation.

The convective heat transfer coefficient is assumed to be equal

to kg/Rd(t) throughout the droplet lifetime. The letters �d� and �e�
near the curves correspond to the numerical algorithms used as

indicated in the text.
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lm, a and b are polynomials of external temperature

(quadratic functions in the first approximation). The

expressions for these coefficients for a typical automo-

tive diesel fuel (low sulphur ESSO AF1313 diesel fuel)

in the range of external temperatures 1000–3000 K was

used in our analysis [50]. Note that the assumption that

hR is equal to the external temperature is valid in the

case of optically thin gas. In the case of optically thick

gas we can assume that hR is equal to the gas tempera-

ture in the vicinity of the droplet.

Expression (3) is certainly more accurate than

Expression (21), but its application requires much more

CPU time than application of Expression (21). Most of

the CPU time is actually spent on calculation of the inte-

gral over k in this expression. The most accurate calcu-

lation of this integral is based on all experimentally

measured values of absorption coefficient ak (4111

points). As follows from our analysis, the reduction of

the number of these point to just 58, allows us to reduce

CPU time by almost two orders of magnitude with the

introduction of an error of less than 10%. This error

can be tolerated in most cases, and this approach is used

in our paper. The analysis of [31] was based on the re-

sults of measurements of k in the ranges 0.5–1.1 lm
and 2.0–6.0 lm, while our results are based on the

measurements in the range 0.2–6.0 lm. Note that when
we use P1(R) in the form (21), the expression for pn
used in Eq. (11) can be simplified considerably (see

Appendix B).

To illustrate the effect of thermal radiation on droplet

heating and evaporation we consider modelling droplet

heating and evaporation in the gas at the temperature

700 K near the droplet and external temperature of

2500 K (this temperature can be identified with the tem-

perature of remote flame). These values of temperature

are extreme rather than typical, but they are used to

illustrate the effect of thermal radiation [54]. As we did

in the previous section we took droplet radius equal to

10 lm and its initial temperature equal to 300 K. In

contrast to the previous section we assumed that the

convective heat transfer coefficient is equal to kg/Rd(t)

throughout the droplet lifetime (this refers to stationary

or almost stationary droplets relative to the surrounding

gas). The problem has been solved in the following

approximations:

(a) Temperature gradient inside the droplet, and con-

tribution of radiation are not taken into account

(Eq. (12)).

(b) Temperature gradient inside the droplet is not

taken into account. The contribution of radiation

is taken into account based on the presentation of

P1 in the form (21).

(c) No contribution of radiation, but the temperature

gradient inside the droplet is taken into account.
Numerical algorithm of the solution of Eq. (1) is

based on the analytical solution corresponding

to constant h (Eq. (11)), applied at each time step.

(d) The same as case (c) but with contribution of radi-

ation taken into account based on the presenta-

tion of P1 in the form (3).

(e) The same as case (c) but with contribution of radi-

ation taken into account based on the presenta-

tion of P1 in the form (21).

(f) The temperature gradient inside the droplet is

taken into account. The numerical solution of

the discretised equation (1) with the radiation

term in the form (21) is performed using the finite

volume technique with fully implicit marching in

time.

In Fig. 3 the surface temperatures and radii of drop-

lets predicted by the models based on approximations �d�
and �e� are compared. The values of Dt were taken equal

to 10�6 s. As can be seen from this figure, the time evo-

lution of surface temperature predicted by both models

practically coincide. The time evolution of droplet radii

predicted by these models differ slightly, but this differ-

ence can be ignored in most practical applications. This

result agrees with the one reported in [13,14], where the

numerical solution of the heat transfer equation inside

the droplet in the presence of convection, radiation

and internal recirculation was performed. Note that

the values of P1(R) obtained based on Eq. (3), already

contained an error of about 10% (see the discussion

above). Recall that the values of parameters used for

our comparison are extreme rather than typical for the

diesel engine environment. In more realistic cases this

difference between the curves is expected to be even
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Fig. 5. Plots of errors of calculation of evaporation time versus

time step for the curves �c�, �e� and �f� presented in Fig. 4. These

errors were calculated relative to the prediction of the numerical

solution of the discretised heat conduction equation with
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algorithms used as indicated in the text.
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smaller. Under these circumstances, the application of

the radiation term in the form (21) seems to have clear

advantages when compared with the application of the

radiation term in the form (3), due to simplicity of the

former. This allows us to recommend the application

of radiation term in the form (21) for practical calcula-

tions in CFD codes.

The plots of droplet surface temperature and radius

predicted by the models based on approximations �a�–
�c� and �e�–�f� is shown in Fig. 4. The values of Dt were
taken as equal to 10�6 s and for the case �f� DR were ta-

ken as equal to Rd/100 as in the case without radiation

(the error introduced by this DR compared with the case

when DR = Rd/1000 was less than 0.5% for Dt = 10�6 s).

As can be seen from this figure, the effect of radiation

tends to increase droplet evaporation due to the addi-

tional heat source, as expected. The effect of temperature

gradient is expected to lead to an increase in droplet sur-

face temperature when compared with the droplet aver-

age temperature. This would lead to an increase in

droplet evaporation due to the direct temperature effect,

and its decrease due to the decrease of convective heat

supply to droplet surface. As follows from Fig. 4, the

second effect dominates over the first, and the rate of

droplet evaporation decreases. The curves b, e and f in

Fig. 4 appear to be rather close to each other. This

means that the predictions of the numerical algorithm

of the solution of Eq. (1) based on the analytical solu-

tion corresponding to constant h and the numerical solu-

tion of the discretised equation with the radiation terms

taken into account give rather similar results.

The errors in evaporation time as the functions of Dt
for the cases �c�, �e� and �f� are shown in Fig. 5. The errors
in all cases are calculated relative to the predictions of

the numerical solution of the discretised heat conduction

equation with Dt = 10�6 s and DR = Rd/1000. As can be

seen from Fig. 5, the largest errors are those for the

curve �c� which corresponds to the case where the effect
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Fig. 4. The same as Fig. 3 but for numerical algorithms �a�–�c�
and �e�–�f�.
of radiation is not taken into account. Hence, radiation

cannot be ignored in this case. The errors for other

curves increase with increasing Dt. This error in the pre-

dicted evaporation times is negligibly small at Dt < 10�5

s and can be tolerated in most practical applications.

As follows from Fig. 6, the CPU requirements for the

case �d� are more than an order of magnitude larger than
for other curves. This CPU requirement is difficult to

justify in view of the very small improvement of the

accuracy of calculations. Comparing curves �e� and �f�
we can see that the CPU time for the algorithm based

on the analytical solution is always much less than

CPU time for algorithm based on the numerical solu-

tion of the discretised equation (1). This allows us to
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Fig. 6. Plots of CPU time versus time step for the curves �c�–�f�
presented in Figs. 3 and 4. The letters near the curves

correspond to the numerical algorithms used as indicated in

the text.
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recommend the former algorithm with the radiation

term in the form (21) for practical applications, includ-

ing possible implementation into CFD codes.

Note that the CPU time required for the case without

radiation (curve �c�) is slightly larger than for the case

when the radiation is taken into account and the radia-

tion term is taken in the form (21). This is related to the

fact that in the case without radiation droplet needs

longer time to evaporate.
6. Conclusions

Several new approaches to numerical modelling of

droplet heating and evaporation by convection and radi-

ation from the surrounding hot gas have been suggested.

Finite thermal conductivity of the droplets and internal

recirculation in them have been taken into account via

the introduction of the effective thermal conductivity

of the droplets keff. Gas temperature Tg and convective

heat transfer coefficient h have been taken as arbitrary

functions of time. The analytical solutions of the heat

conduction equation inside the droplet have been pre-

sented for the cases when h is constant or almost con-

stant. In the case when h is an arbitrary function of

time, this solution is reduced to the solution of the

Volterra integral equation of the second kind. Our

approaches have been based on the incorporation of

these solutions into a numerical code, when gas temper-

ature and convection heat transfer coefficient vary with

time. It has been shown that the solution based on the

assumption of constant convective heat transfer coeffi-

cient is the most efficient for the implementation into

numerical codes. Initially, this solution is applied at

the first time step, using the initial distribution of tem-

perature inside the droplet. The results of the analytical

solution over this time step are used as the initial condi-

tion for the second time step etc. This approach has been

compared with the approaches based on the numerical

solution of the discretised heat conduction equation,

those based on the assumption that there is no tempera-

ture gradient inside the droplet, and those based on the

assumption that the temperature distribution inside the

droplet has a parabolic profile. All these approaches

have been applied to the numerical modelling of fuel

droplet heating and evaporation in conditions relevant

to diesel engines, but without taking into account the ef-

fects of droplet break-up. The algorithm based on the

analytical solution for constant h has been shown to

be more effective (from the points of view of the balance

of accuracy and CPU time requirement) than the ap-

proach based on the numerical solution of the discre-

tised heat conduction equation inside the droplet, and

more accurate than the solution based on the parabolic

temperature profile model. The relatively small contri-

bution of thermal radiation to droplet heating and evap-
oration allows us to describe it using a simplified model,

which takes into account their semi-transparency, but

does not consider the spatial variations of radiation

absorption inside droplets.
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Appendix A. Calculation of T and qn in the numerical

algorithm using the analytical solution for h = const.

Let us present Eq. (11) in the form:

T ðr; tnÞ ¼
1

r

X1
n0¼1

cn0 ðpÞ sinðkn0ðpÞrÞ þ T effðtnÞ; ðA1Þ

where

cn ¼
pn
jk2n

þ exp½�jk2nt� qn �
pn
jk2n

 !

� sin kn

kvnk2k2n
l0ð0Þ exp½�jk2nt�

� sin kn

kvnk2k2n

Z t

0

dl0ðsÞ
ds

exp½�jk2nðt � sÞ�ds; ðA2Þ

all parameters in Eq. (A2) are taken at the previous time

step tn�1 (indicated by the additional subscript (p)).

Having substituted Eq. (A1) into Eq. (19) we obtain:

T ðtnÞ ¼ 3
X1
n0¼1

cn0ðpÞ

Z 1

0

r sinðkn0ðpÞrÞdr þ 3T effðtnÞ
Z 1

0

r2dr

¼ 3ð1þ h0Þ
X1
n0¼1

cn0 ðpÞ sin kn0ðpÞ

k2n0ðpÞ
þ T effðtnÞ. ðA3Þ

Similarly, having substituted Eq. (A1) into the defini-

tion of qn we obtain:

qnðtnÞ ¼
1

kvnk2
X1
n0¼1

cn0ðpÞ

Z 1

0

sinðkn0 ðpÞrÞ sinðknrÞdr

þ T effðtnÞ
kvnk2

Z 1

0

r sinðknrÞdr

¼ un þ
T effðtnÞð1þ h0Þ sin kn

kvnk2k2n
; ðA4Þ

where

un ¼

cn when knðpÞ ¼ kn;

1

2kvnk2
X1
n0¼1

cn0ðpÞ
sinðkn0ðpÞ � knÞ

kn0 ðpÞ � kn
� sinðkn0ðpÞ þ knÞ

kn0ðpÞ þ kn

	 

when knðpÞ 6¼ kn.

8>>><>>>:
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Appendix B. Expression for pn for the simplified form

of the radiation term

Assuming that hR = Text and ignoring the contribu-

tion of T , substitution of P1(R), defined by Eq. (21) into

the expression for pn gives:

pn ¼
1

kvnk2
Z 1

0

3	 106arRb�1
dðlmÞT

4
extr sinðknrÞdr

¼ bn

k2n
ð1þ h0Þ sin kn; ðB1Þ

where

bn ¼
3	 106arRb�1

dðlmÞT
4
ext

kvnk2
.

References

[1] D.B. Spalding, Convective Mass Transfer, Edward Arnold

Ltd, 1963.

[2] G.M. Faeth, Evaporation and combustion of sprays,

Progr. Energy Combust. Sci. 9 (1983) 1–76.

[3] K.-K. Kuo, Principles of Combustion, John Wiley & Sons,

1986.

[4] A.H. Lefebvre, Atomization and Sprays, Taylor & Francis,

1989.

[5] B. Abramzon, W.A. Sirignano, Droplet vaporization

model for spray combustion calculations, Int. J. Heat

Mass Transfer 32 (1989) 1605–1618.

[6] S.K. Aggarwal, A review of spray ignition phenomena:

present status and future research, Progr. Energy Com-

bust. Sci. 24 (1998) 565–600.

[7] J.F. Griffiths, J.A. Barnard, Flame and Combustion,

Blackie Academic & Professional, 1995.

[8] G.L. Borman, K.W. Ragland, Combustion Engineering,

McGraw-Hill, 1998.

[9] W.A. Sirignano, Fluid Dynamics and Transport of Drop-

lets and Sprays, Cambridge University Press, 1999.

[10] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport

Phenomena, John Wiley & Sons, 2002.

[11] A. Mukhopadhyay, D. Sanyal, A spherical cell model for

multi-component droplet combustion in a dilute spray, Int.

J. Energy Res. 25 (2001) 1275–1294.

[12] G. Miliauskas, Interaction of the transfer processes in

semitransparent liquid droplets, Int. J. Heat Mass Transfer

46 (2003) 4119–4138.

[13] B. Abramzon, S. Sazhin, Droplet vaporization model in

the presence of thermal radiation, Int. J. Heat Mass

Transfer 48 (2005) 1868–1873.

[14] B. Abramzon, S. Sazhin, Convective vaporization of fuel

droplets with thermal radiation absorption, Fuel, in press.

[15] S.S. Sazhin, G. Feng, M.R. Heikal, I. Goldfarb, V.

Goldshtein, G. Kuzmenko, Thermal ignition analysis of

a monodisperse spray with radiation, Combustion and

Flame 124 (2001) 684–701.

[16] E.M. Sazhina, S.S. Sazhin, M.R. Heikal, V.I. Babushok,

R.J.R. Johns, A detailed modelling of the spray ignition
process in Diesel engines, Combustion Science and Tech-

nology 160 (2000) 317–344.

[17] S.V. Utyuzhnikov, Numerical modelling of combustion of

fuel-droplet- vapour releases in the atmosphere, Flow,

Turbulence and Combustion 68 (2002) 137–152.

[18] C. Bertoli, M. na Migliaccio, A finite conductivity model

for diesel spray evaporation computations, Int. J. Heat

Fluid Flow 20 (1999) 552–561.

[19] L.A. Dombrovsky, S.S. Sazhin, A parabolic temperature

profile model for heating of droplets, ASME Journal of

Heat Transfer 125 (2003) 535–537.

[20] S.S. Sazhin, L.A. Dombrovsky, P.A. Krutitskii, E.M.

Sazhina, M.R. Heikal, Analytical and numerical modelling

of convective and radiative heating of fuel droplets in diesel

engines. Proceedings of the Twelfth International Heat

Transfer Conference. Grenoble (August 18–23, 2002), vol.

1, Editions scientifique et medicale Elsevier SAS, 2002, pp.

699–704.

[21] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids,

Clarendon Press, Oxford, 1986.

[22] A.V. Luikov, Analytical Heat Transfer Theory, Academic

Press, 1968.

[23] E.M. Kartashov, Analytical Methods in the Heat Transfer

Theory in Solids, Vysshaya Shkola, Moscow, 2001 (in

Russian).

[24] S.S. Sazhin, P.A. Krutitskii, A conduction model for

transient heating of fuel droplets, in: Progress in Analysis,

in: H.G.W. Begehre, R.P. Gilbert, M.W. Wong (Eds.),

Proceedings of the 3rd International ISAAC (International

Society for Analysis, Applications and Computations)

Congress (August 20–25, 2001, Berlin), vol. II, World

Scientific, Singapore, 2003, pp. 1231–1239.

[25] S.S. Sazhin, P.A. Krutitskii, W.A. Abdelghaffar, E.M.

Sazhina, S.V. Mikhalovsky, S.T. Meikle, M.R. Heikal,

Transient heating of diesel fuel droplets, Int. J. Heat Mass

Transfer 47 (2004) 3327–3340.

[26] S.S. Sazhin, P.A. Krutitskii, W.A. Abdelghaffar, E.M.

Sazhina, M.R. Heikal, Transient heating of droplets, in:

Proceedings of �3rd International Symposium on Two-

Phase Flow Modelling and Experimentation�, Pisa, 22–24
September 2004 (CD-ROM).

[27] S.S. Sazhin, W.A. Abdelghaffar, E.M. Sazhina, M.R.

Heikal, Models for droplet transient heating: effects on

droplet evaporation, ignition, and break-up, Int. J. Therm.

Sci. 44 (2005) 610–622.

[28] A. Mukhopadhyay, D. Sanyal, A semi-analytical model

for evaporating fuel droplets, ASME Journal of Heat

Transfer 127 (2005) 199–203.

[29] D.J. Torres, P.J. O�Rourke, A.A. Amsden, Efficient

multicomponent fuel algorithm, Combustion Theory and

Modelling 7 (2003) 67–86.

[30] L.A. Dombrovsky, S.S. Sazhin, S.V. Mikhalovsky, R.

Wood, M.R. Heikal, Spectral properties of diesel fuel

droplets, Fuel 82 (2003) 15–22.

[31] L.A. Dombrovsky, S.S. Sazhin, Absorption of thermal

radiation in a semi-transparent spherical droplet: a simpli-

fied model, Int. J. Heat Fluid Flow 24 (2003) 919–927.

[32] L.A. Dombrovsky, Absorption of thermal radiation in

large semi-transparent particles at arbitrary illumination of

a polydisperse system, Int. J. Heat Mass Transfer 47 (2004)

5511–5522.



4228 S.S. Sazhin et al. / International Journal of Heat and Mass Transfer 48 (2005) 4215–4228
[33] J.S. Chin, A.H. Lefebvre, Steady-state evaporation char-

acteristics of hydrocarbon fuel drops, AIAA Journal 21

(1983) 1437–1443.

[34] R.W. Schrage, A Theoretical Study of Interphase Mass

Transfer, Columbia University Press, New York, 1953.

[35] D.A. Labuntsov, A.P. Kryukov, Analysis of intensive

evaporation and condensation, Int. J. Heat Mass Transfer

22 (1989) 989–1002.

[36] T. Ytrehus, S. Ostmo, Kinetic theory approach to interface

processes, Int. J. Multiphase Flow 22 (1996) 133–155.

[37] A.P. Kryukov, V.Yu. Levashov, S.S. Sazhin, Evapora-

tion of diesel fuel droplets: kinetic versus hydrodynamic

models, Int. J. Heat Mass Transfer 47 (2004) 2541–

2549.

[38] Y. Zeng, C.-F. Lee, A preferential vaporization model for

multicomponent droplet and sprays, Atomization and

Sprays 12 (2002) 163–186.

[39] L.A. Dombrovsky, S.S. Sazhin, A simplified non-isother-

mal model for droplet heating and evaporation, Int.

Commun. Heat Mass Transfer 30 (2003) 787–796.

[40] S.V. Patankar, Numerical Heat Transfer and Fluid Flow,

McGraw-Hill Book Company, New York, 1980.

[41] C. HirschNumerical Computation of Internal and External

Flows, vol. 1, John Wiley & Sons, Chichester, 1994.

[42] H.K. Versteeg, W. Malalasekera, An Introduction to

Computational Fluid Dynamics, Longman, Harlow, 1999.

[43] O.M. Todes, Quasi-stationary regimes of mass and heat

transfer between a spherical body and ambient medium, in:

V.A. Fedoseev (Ed.), Problems of evaporation, combus-

tion and gas dynamics of disperse systems. Proceedings of

the Sixths Conference on Evaporation, Combustion and

Gas Dynamics of Disperse Systems (October 1966),

Odessa: Odessa University Publishing House; 1968, pp.

151–159 (in Russian).

[44] F. Cooper, Heat transfer from a sphere to an infinite

medium, Int. J. Heat Mass Transfer 20 (1977) 991–993.

[45] Z.-G. Feng, E.E. Michaelides, Unsteady heat transfer from

a sphere at small Peclet numbers, Journal of Fluid

Engineering 118 (1996) 96–102.
[46] S.S. Sazhin, V. Goldshtein, M.R. Heikal, A transient

formulation of Newton�s cooling law for spherical bodies,

ASME Journal of Heat Transfer 123 (2001) 63–64.

[47] S.S. Sazhin, W.A. Abdelghaffar, S.B. Martynov, E.M.

Sazhina, M.R. Heikal, P.A. Krutitskii, Transient heating

and evaporation of fuel droplets: recent results and

unsolved problems. In Proceedings of �5th International

Symposium on Multiphase Flow, Heat Mass Transfer and

Energy Conversion�, Xi�an, China, 3–6 July 2005, in press.

[48] S.S. Sazhin, E.M. Sazhina, M.R. Heikal, Modelling of the

gas to fuel droplets radiative exchange, Fuel 79 (2000)

1843–1852.

[49] L.A. Dombrovsky, S.S. Sazhin, E.M. Sazhina, G. Feng,

M.R. Heikal, M.E.A. Bardsley, S.V. Mikhalovsky, Heat-

ing and evaporation of semi-transparent Diesel fuel drop-

lets in the presence of thermal radiation, Fuel 80 (2001)

1535–1544.

[50] S.S. Sazhin, W.A. Abdelghaffar, E.M. Sazhina, S.V.

Mikhalovsky, S.T. Meikle, C. Bai, Radiative heating of

semi-transparent diesel fuel droplets, ASME Journal of

Heat Transfer 126 (2004) 105–109, Erratum 126 (2004)

490–491.

[51] R.C. Ried, J.M. Prausnitz, B.E. Poling, The Properties of

Gases and Liquids, McGraw-Hill Book Company, New

York, 1987.

[52] P.F. Flynn, R.P. Durrett, G.L. Hunter, A.O. zur Loye,

O.C. Akinyemi, J.E. Dec, C.K. Westbrook, Diesel com-

bustion: an integrated view combining laser diagnostics,

chemical kinetics, and empirical validation. SAE report

1999; 1999-01-0509.

[53] S.S. Sazhin, C. Crua, D. Kennaird, M.R. Heikal, The

initial stage of fuel spray penetration, Fuel 82 (2003) 875–

885.

[54] E.M. Sazhina, S.S. Sazhin, M.R. Heikal, M.E.A. Bardsley,

The P-1 model for thermal radiation transfer: application

to numerical modelling of combustion processes in Diesel

engines, in: ‘‘Proceedings of the 16th IMACS World

Congress 2000 on Scientific Computation, Applied Math-

ematics and Simulation’’ CD (paper 125-10), 2000.


	New approaches to numerical modelling of droplet transient heating and evaporation
	Introduction
	Basic equations and approximations
	Summary of analytical solutions
	Case h(t)=const.
	Case of almost constant h(t)
	A parabolic temperature profile model

	Numerical algorithms
	Numerical solution of discretised equation (1)
	Numerical algorithm using the solution for h(t)=const.
	Numerical algorithm using the solution for almost constant h(t)
	Numerical algorithm for arbitrary h(t)
	Numerical algorithm for the parabolic temperature profile model

	Comparative analysis
	Comparison of numerical algorithms without �thermal radiation
	Comparison of numerical algorithms with thermal radiation

	Conclusions
	Acknowledgement
	Calculation of  \overline{T} and qn in the numerical algorithm using the analytical solution for h=const.
	Expression for pn for the simplified form �of the radiation term
	References


